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ABSTRACT: Various forms of regime diagrams have become an accepted means of identifying the dominant type of
forcing of turbulence in the ocean surface layer. However, all of the proposed forms share a number of issues, demon-
strated here, that make them an imperfect tool for this purpose. Instead, I suggest a forcing space consisting of surface
buoyancy flux (usually dominated by surface heat flux) and a growth rate defined as the inverse of a theoretical time scale
for growth of Langmuir circulations in an unstratified water column. Using coastal data, it is demonstrated that, provided
forcing conditions are roughly constant for several hours, location in the upper half-plane of this forcing space predicts
organizational characteristics of observed turbulence that range in a systematic way between those of “pure” convection
and those of full depth Langmuir circulations. In this upper half-plane, where a convective scale velocity exists and the sur-
face Stokes drift velocity can be computed, allowing calculation of a Stokes scale velocity, a linear combination of the two
scale velocities provides a consistent estimate of observed rms turbulent vertical velocity. Time dependence is nevertheless
a frequent characteristic of ocean surface layer forcing, if only because of the (usually large) diurnal variation in surface
heat flux. It is shown that the time scale of response of surface layer turbulence to time variable forcing depends on
whether the major change is due to wind/wave or buoyancy forcing. Relevant modeling studies are suggested.
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1. Introduction

The influence of surface waves on generation of turbulence
in marine surface boundary layers is profoundly asymmetric
between the atmosphere and the ocean. In the atmospheric
boundary layer (ABL), the effect of surface waves is predomi-
nantly to modify the surface roughness perceived by the
atmosphere. However, on the ocean side of the air–sea
boundary, surface waves, through the shear of their Stokes
drift velocity (Craik and Leibovich 1976), are a singular and
often powerful source of turbulence in addition to the sources
(mean shear and destabilizing buoyancy flux) common with
the ABL.

Turbulence in the upper-ocean boundary layer has increas-
ingly been analyzed in terms of regime diagrams, pioneered
by Li et al. (2004). Regime diagrams are spaces of two nondi-
mensional numbers derived by scaling either the turbulent
momentum equation (Li et al. 2004; Gargett and Grosch
2014, hereinafter GG14) or the turbulent kinetic energy equa-
tion (Belcher et al. 2012). All three derivations scale velocity
with the (water-side) surface stress velocity u* 5

�������
t=rw

√
(where t is surface wind stress and rw a characteristic mean
seawater density), while the second scale parameter varies
among authors. Li et al. (2004) use a length scale associated
with the e-folding depth of the wave field, Belcher et al.
(2012) use a length scale that is simply stated to be the mixed
layer depth, and GG14 use a time scale for growth of wave-
forced Langmuir circulations derived theoretically by Leibovich
(1977). Regardless of the underlying scalings, it is then argued

that in different regions of such diagrams, generation of turbu-
lence is dominated by mean shear, Stokes shear, or surface
buoyancy (heat) transfer when this is destabilizing to the ocean.
While regime diagrams have been utilized in analysis of large-
eddy simulations (LES) of the upper ocean and, to a more lim-
ited extent, of ocean observations, I will argue that they are
flawed for interpretation of turbulence in the real ocean surface
layer (OSL) and are more usefully replaced by a “forcing
space.” Provided knowledge of surface forcing fields, forcing
space provides prediction of the organizational character of
OSL turbulence, plus a first quantitative prediction of its
strength in cases of quasi-steady mixed wave and buoyancy
forcings.

I will assess the usefulness of forcing space versus regime
diagrams using direct and simultaneous measurements of
both the surface wave field and the large eddies of OSL turbu-
lence from an upward-looking VADCP (a standard ADCP
with an additional central fifth beam) that was bottom-
mounted in15-m water depth at a coastal cabled observatory
(LEO) for approximately 6 months. Full descriptions of the
instrument, adjustment of the fifth beam to vertical, techni-
ques used to derive turbulence information, and details of
accompanying observations of atmospheric forcing fields can
be found in Gargett and Wells (2007). Processing used to
derive surface wave data from fifth-beam velocities is
described in the appendix of GG14. Data will be referenced
by session (e.g., LEO043), a set of time-consecutive records,
each ∼2 h in length. Individual records within a session will be
referenced by session number plus a two-digit record number
(e.g., 043.05), or by record number alone if the session is
clear.Corresponding author: AnnGargett, gargettann@gmail.com
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Turbulence data used are restricted to time periods when
vertical velocity variance averaged over depth and record
length in time exceeded a noise level of 9 3 1025 (m s21)2

and the entire water column was unstratified, defined as
exhibiting less than 0.58C difference in temperature between
the top and bottom of the water column. The latter require-
ment facilitates comparison with the deep-ocean mixed layer,
and also automatically rejects situations where available
observations would not have sufficient resolution for surface-
forced turbulence confined to a shallow upper layer. Records
satisfying these two conditions will be referred to as unstrati-
fied. In situations requiring a value for the surface Stokes drift
velocity US0, it will also be required that the measured surface
Stokes velocity spectral function (see appendix) exhibits a
defined peak before 0.4 Hz, the highest accepted frequency of
the measured wave displacement spectrum, so that US0 can be
computed (for details, see appendix). Records satisfying all
three conditions will be termed “good.”

I first describe issues common to all extant forms of regime
diagram (section 2), then introduce forcing space and illus-
trate its advantages in predicting the character and relative
strength of turbulent large-eddy structures when forcing con-
ditions are relatively steady (section 3). I next introduce and
assess a prediction of the magnitude of turbulent vertical
velocity variance in conditions of quasi-steady mixed Stokes
and buoyancy forcing, based only on knowledge of surface
forcing parameters (section 4). Finally, I illustrate different
time scales of adjustment of turbulence character and strength
to temporal changes in buoyancy or wind/wave forcing fields
(section 5).

2. Issues with regime diagrams

All three forms of regime diagram referred to above use a
Langmuir number as one of two nondimensional parameters.
I follow GG14 in using a Langmuir number La defined as the
ratio of u* to US0, i.e.,

La ≡ u*
US0

(1)

[although most authors follow McWilliams et al. (1997) in
using Lat ≡ La1=2, Lat inevitably appears squared in scaled
equations so its square is the more straightforward usage]. In
calculation and use of La, three issues arise.

a. Uncertainties in correction of US0 calculated from
surface wave frequency spectra measured up to a finite
upper-frequency fM for missing variance due to waves
of higher frequencies

It is standard practice to use a measured surface wave dis-
placement spectrum in the expression of Kenyon (1969) to
derive a Stokes function whose integral over frequency is the
Stokes velocity (hence use of the term function rather than
spectrum by GG14). Evaluating this integral at the surface
x3 5 0 (x3 defined positive upward from the surface) provides
US0. However, observations provide the wave displacement
spectrum only to some upper-frequency fM (generally of
order 0.5 Hz), hence must be corrected for variance missing at

higher frequencies. This correction has been done in slightly
different ways by different authors, but all methods depend
on some model of the high-frequency form of the wind-forced
surface wave displacement spectrum. Belcher et al. (2012) use
the Phillips (1958) f25 form for all f . fM. Clarke and Van
Gorder (2018, hereinafter CVG) transition from a now widely
accepted Toba (1973) f24 form at fM to the Phillips form at a
wave breaking frequency fB determined by Forristall (1981),
where the correction is terminated (CVG reasonably assume
that waves with higher frequencies make no contribution to a
first-order nonlinear Stokes velocity). A slightly modified
version of the latter method (details in appendix) is used
here to correct values of US0 when waves are wind forced
(the resulting corrections are not strongly dependent on
which of the three methods are used). However, an unad-
dressed problem with such corrections arises if waves are
not being actively forced by the local wind, i.e., when domi-
nant waves are either remotely generated swell or waves
that, while locally generated, are slowly decaying following
a wind stress event. During such periods, which occupy a
nonnegligible fraction of the time at LEO, observed spectra
should not be corrected by an algorithm that assumes wind-
forced waves. Since there is no proven algorithm for high-
frequency extension when waves are identified as being “not
wind forced” (using the ECMWF criterion, see appendix of
Bidlot 2020), in these cases the value used for US0 remains the
value determined by integration to fM.

Differences due to missing variance corrections can be sub-
stantial, as seen in the regime diagram of Fig. 1, the log {Ra,
La} diagram of GG14, where color codes turbulent vertical
velocity variance wvar ≡ 〈w′2〉 averaged over record length
(∼2 h) in time (〈〉) and over depth (overbar). La [Eq.(1)] is
the ratio of stress forcing to Stokes (Langmuir) vortex forcing
in the scaled turbulent momentum equation. The ratio of
buoyancy to stress forcing in this equation is a Rayleigh
number

Ra ≡ ag
kT

Qt2* 5
ag
kT

Q
g2*

, (2)

where a . 0 is the coefficient of thermal expansion and kT
the thermal conductivity of seawater, and Q . 0 is the heat
gain of the atmosphere during convective conditions (to
retain continuity with atmospheric boundary layer conven-
tions, GG14 defined Q as the surface heat flux to the atmo-
sphere from the ocean: thus Q . 0 is destabilizing to the
ocean). The time scale

t* ≡
dUS

dx3

dU
dx3

( )21=2

5
dUS

dx3

( )
x3523m

u*
H

[ ]21=2

(3)

in (2) is the form used by GG14 (see their appendix) for that
derived by Leibovich (1977) for growth of Langmuir circula-
tion (LC) in an unstratified sheared fluid. Since observations
include both signs of Q, the regime diagram of GG14 plots
records with stabilizing flux (Q , 0) as 2log(|Ra , 0|) in the
lower half-plane.
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The regime diagram of Fig. 1a uses good data from
LEO043, the iconic Langmuir supercell (LSC, defined by
Gargett et al. 2004) event at LEO, before correction of wave-
derived parameters [US0 and dUS=dx3

( )
x3523m] for missing

variance. In Fig. 1b, both parameters in all records are cor-
rected with the wind-forced wave algorithm described in the
appendix, while in Fig. 1c they are corrected only if the wave
field satisfies the ECMWF criterion for wind-forced waves.
Note that although the effects of correction for missing vari-
ance on La can be considerable, there is almost no effect on
Ra because Stokes shear at the depth x3 5 23 m that GG14
use in evaluating (3) is essentially unaffected by the correction
(see appendix).

An unrelated issue with determination of US0 occurs when
an observed (uncorrected) Stokes function associated with
wind-forced waves does not have a defined peak within the
range of frequencies measured. The value of US0 is considered
undeterminable in such cases, fortunately rare.

b. In wind-forced wave conditions in the ocean, La is
roughly constant

If US0 5 CSu*, with CS a constant, then the Langmuir num-
ber La5 C21

S is constant. The earliest observational study
suggesting that this is indeed the case on average in wind-
forced seas was that of Belcher et al. (2012) who used ERA-
Interim wave model data from the Southern Ocean (their
Fig. 3) and found Lat ∼ 0.3, corresponding to La ∼ 0.1, hence
CS ∼ 10. A large set of LEO measurements (Fig. 2), also show
a relatively linear relationship between US0 (corrected for
missing variance) and u*, with a value of CS approximately
the value of 12 determined by GG14 using uncorrected US0

values and a smaller dataset. CVG used simultaneous wind
and wave gauge measurements from a wider range of shelf
and deep ocean buoys and found (their Fig. 5) CS ∼ 7. How-
ever, CVG applied a factor of 0.8 to their values of US0 to

roughly account for directional spread in the surface wave
field: removing this correction gives a value of CS ∼ 9. Despite
some variation in CS among these datasets, consistent with
minor variation in data and/or methods used in calculation of
US0 and/or u*, together they provide strong evidence of a
roughly linear relationship, at least in an averaged sense,
between the two fields whose ratio forms La.

In the absence of surface buoyancy forcing, roughly cons-
tant La ,, 1 has been interpreted as demonstrating dominant
turbulence production by wave (Stokes) forcing over any that
might be associated with a classical sheared boundary layer.
In itself an important result of present regime diagrams, it

FIG. 1. Modification of the log{Ra, La} regime diagram of GG14 for LEO043 caused by various choices for computing US0. (a) US0

uncorrected for variance missing at frequencies higher than fM 5 0.4 Hz, the maximum frequency used for measured wave displacement
spectra. (b) Correction to US0 (see appendix) that assumes wind-forced waves in all records. (c) The same correction for wind-forced
waves, but no correction for records in which waves do not satisfy an ECMWF criterion for wind-forced waves. The boxes in the figure
delineate boundaries, proposed by GG14 using uncorrected US0, that ensure the large eddies of turbulence have characteristics of full-
depth Langmuir circulations. Color codes wvar ≡ 〈w′2〉, the turbulent vertical velocity variance averaged over time (∼2 h) of each record
(〈〉) and depth (overbar).

FIG. 2. Relationship between corrected surface Stokes velocity
US0 and surface stress velocity u*. Values of US0 determined for
266 individual records (regardless of stratification, since only sur-
face wave properties are used) are sorted into bins of record-
averaged u* before averaging. The straight line has the slope of
12 previously determined by GG14 using a smaller dataset.

G ARGE T T 521MARCH 2022

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 08:52 PM UTC



nevertheless means that in an averaged sense, La does not
provide additional information about turbulence properties.
However, the conclusion that La is approximately constant is
based on highly averaged data, and with individual shorter
data periods there is significant scatter. Can this scatter at
least be interpreted as increasing dominance of Stokes forc-
ing, hence stronger LC, as La decreases? Unfortunately not.

c. The expectation that smaller La is associated with
stronger Stokes forcing can be shown to be unfounded

When buoyancy forcing is weak or absent, smaller La in
regime diagrams is widely associated with increased domi-
nance of wave forcing over stress forcing (Li et al. 2004;
Harcourt and D’Asaro 2008; Belcher et al. 2012; Yoshikawa
et al. 2018, among others) A clear counterexample to this
expectation is seen in the enlargement (Fig. 3) of a portion
of the full regime diagram of Fig. 1c. Records 20–23 occur
during the peak wind stress and wave amplitudes observed
during the storm causing the supercell event, exhibit distinc-
tive features of LC and large turbulent vertical velocity vari-
ance, and have surface heat gain magnitude comparable to
records 31–34. However, these latter records are character-
ized by a continued decrease in turbulent vertical velocity var-
iance wvar and loss of structural organization, despite moving
to progressively smaller values of La. This behavior, at near-
constant Ra, is opposite to the assumed increase in Langmuir
forcing relative to mean shear forcing as La decreases. The
changes observed are in fact due to rapid decrease in wind
stress (starting in record 31 and nearing zero by record 35) at

the end of the storm while, in contrast, wave amplitude
declines much more slowly and peak wavelength hardly
changes. The observed decrease in La during these records
is thus not evidence of increasing dominance of wave forc-
ing over shear forcing, hence strengthened LC, but is rather
associated with weakened LC, caused by sharp decrease in
u* accompanied by more gradual decrease in US0. Simula-
tions based on Reynolds-averaged Navier–Stokes (RANS)
equations augmented with Craik–Leibovich vortex forcing
are found to reproduce this behavior when the Langmuir
number of the simulation is reduced by reducing the mag-
nitude of u* while keeping (single) wave parameters fixed
(A. Tejada-Martinez 2021, personal communication).

These observations reveal a fundamental shortcoming in
use of a regime parameter that, like La, involves ratios of scal-
ing variables, since the value of the parameter can be
achieved by different combinations of these variables. The
observational data in Fig. 3 show that characteristics of
the turbulence actually observed can depend not only on the
value of a regime parameter, but on how that value is
achieved.

Although the first two issues described above are unique to
the Langmuir number, this final issue also afflicts the second
nondimensional parameter in any of the proposed regime dia-
grams, since these are all some ratio of forcing parameters.
Again using the regime diagram of GG14 as an example, the
same value of Ra can be achieved with different combinations
of Q characterizing convective forcing and time scale t* char-
acterizing Stokes forcing.

3. Forcing space as an alternative to regime diagrams

To provide a means of reliably determining the character}
and hopefully the strength}of upper-ocean turbulence under
the influence of multiple forcing mechanisms, it seemed advis-
able to move from the nondimensional ratios of present
regime diagrams to a space of more directly interpretable
forcing parameters. The first chosen parameter is surface
buoyancy flux Bo, used as a measure of buoyancy forcing and
computed from the (assumed dominant) surface heat flux Q
as Bo 5 gaQ=roCy, where g 5 9.81 m s22 is acceleration due
to gravity, a 5 1.73 1024 K21 is the thermal expansion coeffi-
cient of seawater at the surface layer temperature of 108C typ-
ical of LEO, ro5 1024 kg m23 is a reference seawater density
and Cy 5 4.19 3 103 J kg21 K21 is the specific heat of seawa-
ter at constant volume. The second parameter chosen is
g* 5 t21

* , the LC growth rate related to Leibovich’s time scale
t*, used as a measure of wind/wave forcing (use of g* rather
than t* provides a parameter with the desirably intuitive prop-
erty of increasing with increasing magnitude of the underlying
forcing).

The particular definition used for g* (that introduced by
GG14, using Stokes shear evaluated at a fixed depth of
x3 5 23 m) has the advantage of not involving any wave
variable at the surface itself (in particular, Stokes shear as
evaluated from measured surface wave displacement spec-
trum is unpleasantly infinite at x3 5 0). An additional
advantage of this definition is that a shear value determined

FIG. 3. Enlargement of an area of Fig. 1c, highlighting records
during the supercell event that starts in record 20. Despite stabiliz-
ing heat flux at the time, records 20–23 at the height of the storm
exhibit all the characteristics of full-depth LC, while records 31–34
with essentially the same Ra values later in the storm move to
lower La while structures weaken. This behavior is counter to the
expectation that lower La implies stronger Stokes forcing, hence
stronger LC, and demonstrates that characteristics of observed tur-
bulence depend not only on the value of La but on how that value
is achieved.
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at this depth in the water column is almost unchanged by
correction for loss of variance (see appendix), hence has
none of the uncertainty associated with that process in US0.
A final advantage is that this value of Stokes shear, hence
g*, can be computed for every record, unlike US0 which can-
not be reliably computed when waves are not wind forced
and/or the measured surface Stokes function has its maxi-
mum too near fM.

Figure 4 shows unstratified records in this forcing space1

for two defining sessions [log(g*) is used to expand resolution].

Color codes the logarithm of wvar, where again the loga-
rithm is used to provide detail. LEO161 (Fig. 4a) is an
unusual cold air outbreak, characterized by surface heat
loss combined with very weak offshore winds, hence a
swell-dominated wave field. Record 161.08 is used as
archetype for “pure” convection (CVN), defined as con-
vection in the near absence of wind waves and with mini-
mal mean shear. LEO043 (Fig. 4b) is the well-described
Langmuir supercell event (Gargett et al. 2004) in which
LSC are forced by storm winds and seas: record 043.24 has
been used as an archetype for LSC. The regions of forcing
space occupied by the two sessions are almost completely
disjoint. LSC records of LEO043 lie at high values of g*
and values of Q (of either sign) that are less than
∼(100–150) W m22, while the CVN records of LEO161 have
magnitudes of Q that are only slightly larger (∼200 W m22),

FIG. 4. Distribution in proposed forcing space of unstratified records from (a) LEO161, taken during a cold air out-
break with near-zero wind stress and a wave field consisting only of swell and (b) LEO043, the iconic storm-forced
LSC event at LEO. Using the logarithm of g* expands resolution: in the same vein, color-coding log(wvar) reveals
increased detail of signal strength. Visualizations below show horizontal fluctuation velocity components in coordi-
nates oriented along (u′) and across (y′) record-average wind direction, vertical fluctuation velocity w′, and backscatter
amplitude A5. The order of fields shown on the panels of (c) Record 161.08, the archetype for pure convection, is the
same in (d) Record 043.24, the archetype for strong, well-organized LSC. Velocity scales (610 cm s21 for u′, y′,
64 cm s21 for w′) are the same for both records. Backscatter is corrected for range and beam spread but uncalibrated.
Backscatter scales have the same range (20 units) but differ in offset (70 for LEO161, 80 for LEO043). All fields are
Hanned over three (0.4 m) range bins in the vertical and 121 (1 s) pings and displayed as functions of time (ping) and
hab5 height above bottom.

1 Axes for both Bo andQ are shown in forcing space plots, since
these two fields will be used interchangeably in the present discus-
sion. However, since correspondence between the two fields will
differ in regions with different surface layer temperature (hence
different a),Bo is the more fundamental parameter.
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but values of g* that are nearly two orders of magnitude
smaller.

The characteristics of turbulence associated with the CVN
and LSC end-members are dramatically different, as illus-
trated by visualizations of turbulent velocities and backscat-
ter. Record 043.24 (Fig. 4d) exhibits the highly organized
large-eddy structures characteristic of LSC. Regions of down-
ward fluctuation vertical velocity (w′) are associated with
bottom-intensified downwind fluctuation velocity (u′), and
change in sign (determined by the sign of crosswind mean
flow) of near-bottom crosswind fluctuation velocity (y′).
Backscatter exhibits typical plumes of surface/bottom origin
in downwellings/upwellings, associated with surface-origin
air bubbles and bottom-origin sediment, respectively. In
contrast, the CVN record 161.08 (Fig. 4c) shows random
fluctuations in all three velocity components and no obvious
structure in the backscatter signal. CVN is also associated

with considerably weaker turbulent velocities: mean square
turbulent vertical velocity 〈w′2〉 above noise is only 2.7 3

1025 (m s21)2 for 161.08, compared to 3.9 3 1024 (m s21)2

for 043.24.
While the LSC end-member is observed during any

extended period of storm force winds, the CVN end-member
was seen in only ∼8 h (records 161.06–09) during the nearly 6
months of the LEO deployment. In Fig. 5, a compilation of
unstratified records from several sessions, most records in the
upper half-plane of forcing space fall between these two end-
members, indicating some mix of convective and Stokes forc-
ing. Can location in forcing space enable identification of the
character and/or magnitude of expected turbulent large-eddy
structures?

Structural identification of the degree of convective relative
to Stokes forcings is hampered by the fact that unstable con-
vection is organized into roll vortices by the presence of a
mean shear flow (Etling and Brown 1993). Paired counterro-
tating vortices of sheared convection have the same features
used to identify LC, change of sign of the cross flow at the top
and bottom of upwellings/downwellings, and accelerated flow
in the downflow direction over downwellings. It is nonetheless
the case that observations in different areas of forcing space
do exhibit consistent qualitative differences, as well the quasi-
systematic difference in wvar that is clear in Fig. 5 and will be
discussed in section 4.

To illustrate differences in character of turbulent structures
in different parts of forcing space, I will use measurements
from two sessions (LEO159 and LEO160) that include a wide
range of forcing combinations. The two sessions, although
consecutive in time, are shown separately in Fig. 6 to enable
location of individual “clusters” of records.

In Fig. 6, clusters are loosely defined as groups of time-con-
secutive records having similar values of Q (Bo) and log g*( ),
i.e., quasi-steady forcing. Figure 7 provides visualizations
of turbulent velocities and acoustic backscatter for one

FIG. 5. Locations in forcing space of all unstratified data from
LEO sessions 043, 128, 129, 154, 159, 160, 161. Color codes
log(wvar).

FIG. 6. Distributions in forcing space of unstratified records from consecutive sessions (a) LEO159 and (b) LEO160
(note restricted extent of the x axis compared to Fig. 5). Ellipses and letters highlight clusters of records within which
forcings are quasi-steady and records have similar character of velocity/backscatter features. Numbers for records not
within the clusters are omitted for clarity. Visualizations of an individual record from each cluster, shown in Fig. 7,
illustrate systematic variation in qualitative organization of turbulence with location in forcing space. Color codes
log(wvar).
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FIG. 7. (top) Map of the forcing space locations of the clusters of records shown in Fig. 6. (bottom) Characteristic
records from each cluster: (a) 159.18, (b) 160.07, (c) 160.28, (d) 160.17, (e) 159.40, (f) 159.43. In all panels, velocities
are in the order shown in (a), with the same velocity scales (610 cm s21 for u′, y′,64 cm s21 for w′) and the color bars
used in Fig. 4. Backscatter amplitude A5 has constant range (20 units) but can differ in offset: offset 70 in (a)–(c), offset
75 in (d), and offset 80 in (e) and (f). All fields have been Hanned over three (0.4 m) range bins in the vertical and
121 (1 s) pings in time.
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characteristic record within each cluster in Fig. 6, with the
general location of each cluster outlined in the upper diagram.
Any of the other records within a cluster yield visualizations
with character similar to that shown.

Cluster a, with an intermediate value of Q ∼ 200 W m22

and the smallest value of log g*( ) ∼23:4, has weak and disor-
ganized velocity structures similar to those of cluster b,
which has a smaller value of Q but larger log g*( ). It thus
seems that in cluster b larger Stokes forcing makes up in
magnitude for smaller convective forcing. Both clusters
have characteristics generally similar to the CVN archetype
of Fig. 4c.

Cluster c has roughly the same value of log g*( ) ∼23:2
as cluster b, but significantly larger convective forcing
(Q ∼ 450 W m22), and exhibits stronger, although still diso-
rganized, full-depth structures, with backscatter that is do-
minantly of surface origin. At the same value of Q but higher
values of log g*( ) ∼23:0, cluster d shows clearer signs of
organized structures in velocity fields; moreover backscat-
ter now shows clear signs of bottom as well as surface origin
scatterers. In cluster e, organization as well as magnitude
of turbulent velocity fluctuations continue to increase as
log g*( ) continues to increase and Q to decrease, culminating
in the classic LSC characteristics of record 159.43 (f).

During review, it was suggested that a quantitative measure
of organizational difference would be useful, in addition to
the qualitative descriptions given above. Two possibilities first
considered failed to provide a useful quantitative measure of
the progression of organization in moving from CVN to LSC
via clusters a–e. No combination of the “organizational
scores” defined by Gargett and Savidge (2020, see appendix B),
provided any distinction outside error bounds, save for a
sharp rise between cluster e and LSC. Distinction based on
the relative magnitudes of fluctuation variances, as suggested
on the basis of LES modeling by Li et al. (2004), was inappli-
cable because in all the present observations, vertical velocity
variance is smaller than either horizontal variance. Finally, a
new stress metric was explored, based on observational pro-
files of turbulent stresses for two cases identified as CVN
(GG14, their Figs. 3e,f) and LSC (GG14, their Figs. 3a–c). A
consistent difference between the two cases, found common
to all examples of either, is found in the turbulent shear stress
〈2u′w′〉, where angle brackets denote time (ping) averaging
over a record: the minus sign provides a positive value when
downward w′ , 0 is associated with downwind u′ . 0. All
CVN records have near zero values of this stress throughout
the water column, as would be expected in convection not

organized by significant mean shear and unaffected by surface
waves. LSC records have much larger values that are con-
sistently positive, clear evidence of the type of organization
expected of LSC. It thus seemed possible that a metric
based on 〈2u′w′〉 might provide the desired quantization
of the degree of organization of large-eddy turbulent
structures.

To form a stress metric for a given record, the time-
averaged profile of 〈2u′w′〉 is further averaged over depth
(using all range bins from 1 through slantbin, the last bin
before potential sidelobe effects from the surface could
appear in the slant beam data used to compute u′). Values
for records within clusters vary as a result of (i) different
distance to the surface (hence differences in slantbin, hence
the number of bins used in the record average), dependent
on both the phase of the tide and wave state; (ii) different
numbers of quasi-organized structures advected past the
measurement site during an individual record, dependent
on the varying magnitude of crosswind tidal flow; (iii) differ-
ent numbers of records in each cluster, and finally (iv) the
natural variability expected of a turbulent flow. Record-
averaged values of the stress metric are thus finally averaged
over all records within the clusters of Fig. 4 (plus two added
clusters that define representative values for CVN and LSC)
and shown in Table 1 with the standard deviation within the
cluster. The mean value of the metric is seen to increase
continuously in moving from CVN to LSC via clusters a–e
in order (although note that values for CVN and clusters a
and b are statistically indistinguishable from zero, consistent
with the previous conclusion that both of these clusters have
characteristics generally similar to the CVN archetype of
Fig. 4c). The stress metric as defined thus serves to quantify
the qualitative changes in organization of the turbulent
velocity fields in the representative records of Fig. 7 that are
described above.

The turbulent velocity and backscatter fields of Fig. 7
demonstrate a general progression of qualitative features
and an associated quantitative stress metric that together
describe the changing degree of effective organization of
large-eddy features with position in forcing space. However,
given previous discussion of the similarities between struc-
tures resulting from sheared convection and those resulting
from Stokes forcing, it still remains unclear how to appor-
tion observed turbulent variances between the two pro-
cesses anywhere between the end-members of CVN and
LSC. In practice, separation would be unnecessary if means
could be devised to predict some useful quantity or quantities

TABLE 1. The stress metric [104 3 (m s21)2 5 (cm s21)22] defined in the text for the clusters shown in Fig. 6: added clusters define
averages and standard deviations for end-member conditions of pure convection (CVN) and Langmuir supercells (LSC). Values of
the stress metric significantly different from zero are highlighted in bold font.

c: 160.27–31 d: 160.15–20
0.306 6 0.170 0.744 6 0.265

CVN: 161.06–09 a: 159.15–19
0.004 6 0.084 0.113 6 0.112

b: 160.07–14 e: 159.39–42 LSC: 043.22–26
0.180 6 0.211 1.33 6 0.364 2.15 6 0.429
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associated with the unseparated combination, a challenge now
addressed.

4. Prediction of rmsw 5 (wvar)1/2 from scale velocities
associated with surface forcings

Turbulent vertical velocity variance wvar has been the primary
quantitative measure used for the strength of turbulence in many
studies of the OSL. Is it possible to predict the obvious pattern of
wvar magnitude seen in the cases of mixed convective and Stokes
forcings observed in the measurements of Fig. 5?

The method explored here is to use scale velocities that sepa-
rately characterize unstable convection and Stokes wind-wave
forcing to predict observed values of root-mean-square turbu-
lent vertical velocity rmsw5 wvar1/2 at times when both forcings
are present simultaneously. From extensive atmospheric litera-
ture, the appropriate scaling velocity for convection is given by

w* 5 BoH( )1=3 5 ag
roCy

QH
( )1=3

, (4)

whereH is the depth of an unstratified water column.

As a scale velocity for Stokes-forced turbulence, I will use

w*S ≡ u2
*
US0

( )1=3 · (5)

This particular form, suggested by both theory (Smith
1996) and LES (Skyllingstad 2000; Min and Noh 2004; Grant
and Belcher 2009; Harcourt and D’Asaro 2008), involves
underlying assumptions that are in accord with various fea-
tures of LC observations, as elucidated by GG14.

The simplest approach to scaling turbulence driven by
mixed convective/Stokes forcings is a weighted sum of the
two scale velocities

wCS 5 aCw* 1 aSw*S, (6)

since such a scaling approaches an end limit of one domi-
nant scale velocity when the other becomes small. The
appropriate choice of weights is made by choosing coeffi-
cients necessary to give rough agreement with the two end-
members, assuming that w* dominates if w*S is small, w*S if
w* is small. These initial weights are then slightly modified

FIG. 8. (a) Dependence of rmsw5 〈w′2〉
( )1=2

on the weighted mean scale velocity wCS 5 aCw* 1 aSw*S, with
aC 5 0.35 and aS 5 0.6, for good records from all sessions which have Q . 0. A 1:1 line is shown for reference: linear
least squares fit to the data yields slope 0.95 and intercept zero. In the examples of (b) LEO161, (c) LEO043 (unstrati-
fied only after record 20), and (d) LEO159, the fundamental comparison is between observational rmsw (heavy black
line) and wCS (black dots connected by a line). The components of wCS are also shown: convective scale velocity
w* (x marks) whenQ. 0 and Stokes scale velocity w*S (plus signs) whereUS0 is determinable.
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in order to optimize the observed linear relationship of
rmsw to wCS over all available data. Figure 8a shows the
relationship (6) with aC 5 0.35 and aS 5 0.6, with a 1:1 line
shown for reference: a linear least squares fit to the data
produces a slope of 0.95 ∼ 1, with intercept zero. The other
plots of Fig. 8 show measured values of rmsw, determinable
values of w*S (i.e., where US0 can be calculated) and deter-
minable values of w* (i.e., where Q . 0) for the two end-
member records LEO161 (Fig. 8b) and LEO043 (Fig. 8c)
used to set aC and aS, respectively, as well as LEO159
(Fig. 8d), a session exhibiting a wide range of combinations
of convective and Stokes forcing, as seen in Fig. 6a. The
scale velocity wCS reasonably scales observed rms vertical
velocity for both CVN in LEO161 and LSC in LEO043, as
well as most of the individual records of LEO159, from
CVN (records 15–20) through mixed forcings (records 4–10)
to LSC (records 36–43).

While a successful scaling for rmsw over a full range of
mixed forcings has been demonstrated, it should be pointed
out that use of US0 as presently derived from observations
and widely used in the literature in the definition of the LC
scale velocity w*S is a disadvantage because of a range of
issues in determining its value in all conditions (section 2a).
Consideration of alternate forms for near-surface Stokes drift

(e.g., GG14, their Fig. A3; Harcourt and D’Asaro 2008) for
use in defining a “best” scaling velocity to use for LC is
beyond the scope of this paper, but will be addressed in a sub-
sequent study.

5. Effects of time-dependent forcing

Focus thus far has been on characterizing and quantifying
turbulence during conditions with relatively constant wind-
wave and destabilizing buoyancy forcings (hence the clusters
in Figs. 6 and 7 in which both forcing metrics are approxi-
mately constant for several hours). However, in the real
world, surface buoyancy forcing normally has a strong diurnal
cycle, with overnight heat loss usually followed by (often
large) stratifying heat flux during daytime hours, while wind
stress and wave fields vary on erratic time scales associated
with frontal passages and storms. It is thus of interest to see
what information is offered by forcing space locations of
records during times of strongly time-dependent forcing.

First consider change predominantly in surface heat (buoy-
ancy) flux, as seen in the two examples of Figs. 9a,b. Figure 9a
shows a portion of LEO128 which begins with two records
(00 and 01) exhibiting characteristics similar to those in
Fig. 7e, i.e., structures similar to LSC but with slightly less

FIG. 9. Portions of (a) LEO128 and (b) LEO160 in forcing space, illustrating time-dependent surface buoyancy forc-
ing at relatively constant Stokes forcing and portions of (c) LEO159 and (d) LEO043, illustrating time-dependent
Stokes forcing at relatively constantQ. These results suggest a longer turbulence adjustment time scale associated with
buoyancy forcing change than wind-wave forcing change.

J OURNAL OF PHY S I CAL OCEANOGRAPHY VOLUME 52528

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 08:52 PM UTC



organization and somewhat weaker turbulent velocities than
the LSC end-member. During a period (records 00–04) with
nearly constant g* (constant Stokes forcing), the surface heat
flux reverses sign, becoming increasingly stabilizing, yet with-
out noticeable change in wvar until approximately record 4,
4–6 h after the change in buoyance forcing begins. Thus a
period of ∼4–6 h of stabilizing surface heat flux appears neces-
sary to significantly diminish existing turbulence.

A second example of the slowness of response to changes
in heat flux forcing is seen in LEO160 (Fig. 9b) when a sharp
but short-lived (only in record 22) decrease in destabilizing
heat flux leaves wvar relatively unchanged over the period of
records 21–24. A decrease ofQ by over 200 W m22 but lasting
only ∼2 h was not sufficient to significantly decrease the mag-
nitude of wvar. This slow response to change in heat flux forc-
ing magnitude makes the wvar of record 22 an outstanding
mismatch to the other records (03–07) in the same area of
forcing space.

In contrast, response to change in magnitude of wind-
wave (Stokes) forcing as quantified by g* is demonstrably
faster, as seen in Figs. 9c,d, respectively, portions of
LEO159 and LEO043 with relatively constant values of Q.
The portion of LEO159 starts with a record (37) that has
full depth but weak and disorganized structures, but as g*
increases, these become more organized and stronger in
magnitude (see record 40 in Fig. 7e) culminating in LSC
(record 43, Fig. 7f). The opposite progression is seen in
Fig. 9d, where record 043.30 starts as LSC, but subsequent
records steadily decrease in both organization and wvar as
g* decreases, behavior consistent with their movement in
forcing space (note that these are the same records which
move in an inconsistent direction with respect to La in the
regime diagram of Fig. 3). In both of these cases, record-to-
record changes keep the magnitude of wvar in agreement
with the overall distribution seen in Fig. 5. Thus the time for
turbulence adaptation to changes in Stokes forcing appears
to be less than 2 h.

These time scale results are in general agreement with
order of magnitude estimates presented by GG14, based on
large-eddy overturning time scales calculated using H and the
vertical scale velocities used in section 4 for either Langmuir
circulation or destabilizing convection. Their results suggested
an adjustment time for wind-wave forced turbulence shorter
than the record length (so that Langmuir turbulence averaged
over the 2-h record period would be effectively in steady state
with the forcing at the time) while that for convection was
substantially longer. Although their calculations did not
encompass mixed turbulence, i.e., that forced by a combina-
tion of wind-wave and convective forcings, the present results
suggest that an appropriate adjustment time is the “fast”
Langmuir adjustment time (,2 h) if wind-wave forcing
change dominates, and the “slow” (4–6 h) convective adjust-
ment scale if the dominant change is in buoyancy forcing.

The diurnal cycle of surface buoyancy flux forcing has a
daytime period of stabilizing forcing that is typically shorter
than that of destabilizing (convective) nighttime forcing. Cou-
pled with slower adjustment time to changes in the surface
flux, this implies that the state of turbulence during daytime

hours is rarely in steady-state and, particularly early in the
day, is often a strong function of its state at the end of the pre-
vious night.

Before leaving Fig. 9, note the cluster of records marked
9–12 in Fig. 9a. In all the sessions examined, this is the sole
cluster with variance (extremely weak, as seen here and,
partially hidden, in Fig. 5) that disagrees with its position in
forcing space. It appears likely that the cause is the presence
of stratification. Evidence for stratification comes first from
the observation of significant vertical shear in horizontal
mean velocity, beginning in record 9 and persisting until
record 17 (records 13–17, with stratifying heat flux, were
omitted from Fig. 9a): such shear is often associated with
density stratification. In the present case, any stratification
must be associated with salinity, since the temperature dif-
ference remains near zero. Unfortunately, there were no
continuous salinity measurements at the site: a CTD at the
node was operated manually (and sporadically) only during
daytime working hours at the LEO observatory. Equally
unfortunately, records 9–12 were at night. However, the first
two subsequent daytime CTD profiles, both taken during
record 13, show a step change in density within the water
column at approximately the level of observed horizontal
velocity shear. The density step moves progressively toward
the bottom (as does the shear layer) and is last seen in a
CTD taken during record 15: thereafter the water column
has an unstratified profile above ∼1 m above bottom. No
steps were found in available CTDs within, immediately
before, or immediately after any of the other sessions used
here, leading to the conclusion that salinity-induced stratifi-
cation caused the apparent failure of the forcing regime dia-
gram in this single cluster of records, emphasizing the
importance of complete observations of water column den-
sity structure.

6. Discussion and conclusions

Various forms of regime diagrams have been proposed for
use in diagnosing the structure and strength of upper-ocean
turbulence generated through direct surface forcing by desta-
bilizing buoyancy flux and/or wind stress, plus the inevitable
waves driven by wind stress. A major conclusion of the pre-
sent work is that all of the proposed forms for regime dia-
grams share significant shortcomings. Perhaps the most
fundamental is the use of ratios of scaling parameters to form
what are supposedly definitive descriptors. It has been clearly
demonstrated that turbulence characteristics can depend not
only on the value of a given ratio, but on how that ratio is
achieved.

An alternate diagnostic proposed and explored here is
that of a forcing space. With the assumption that surface
freshwater flux is either not present or insignificant, a first
dimension is surface buoyancy flux Bo (of either sign) deter-
mined from surface heat flux Q. The second dimension is g*,
a growth rate for Langmuir circulation in an unstratified
fluid. While g* uses two parameters, mean shear and Stokes
shear, it does so in a theoretically derived form (Leibovich
1977) that incorporates the reality that it is almost never
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possible to separate turbulence of a classical stress-driven
boundary layer from Langmuir turbulence in the upper
ocean, because imposition of significant surface wind stress
concurrently both drives mean flow and generates surface
waves. It is this intimate relationship between the two forms
of wind stress driving (with small-scale turbulence from the
shear boundary layer acting as a vorticity source for the
Stokes vortex force even before any additional source due
to wave breaking) that is likely at the root of the rough pro-
portionality between US0 and u*, hence the statistically
constant La that is a consistent feature of reported ocean
observations.

Because the basic structure of large eddies associated with
convection in the presence of mean shear is the same as that
of Langmuir circulation, when these two mechanisms are pre-
sent together they cannot be separated by identifying distinc-
tive structures. Instead, in such mixed forcing cases it has
been shown that, provided forcing conditions are roughly
constant for several hours, location in the upper half-plane of
Bo,g*
{ }

forcing space predicts not only qualitative features of
observed turbulent large eddies, but the value of a new quan-
titative metric based on averaged turbulent stress 〈2u′w′〉, as
both range between those characteristic of end members of
pure convection and Langmuir supercells. Finally, it has been
demonstrated that in forcing conditions where the convective
scale velocity w* exists (Q . 0) and surface Stokes drift veloc-
ity US0 can be computed, allowing calculation of a Stokes
scale velocity w*S, a linear composite of the two scale veloci-
ties generally provides an excellent estimate of the observed
rms turbulent vertical velocity associated with the mixed
forcing.

Surface layer forcing conditions are frequently not steady
for extended periods of time. When forcings are not steady,
it has been shown that adjustment to rapid change in only
wind-wave forcing (as characterized by g*) is itself rapid,
essentially within the 2 h averaging time of records. In such
conditions, the form and strength of turbulence are effec-
tively in steady state under the applied forcing. In contrast,
adjustment to rapid change in surface buoyancy forcing is
slower, on the order of 4–6 h in the case of night-to-day
change in sign of Q. Rapid change in surface buoyancy forc-
ing typically occurs during periods when heat flux forcing
changes sign during the diurnal cycle. At such times, turbu-
lence is not steady state, but instead depends on the previ-
ous history of forcing.

A striking feature of the overall distribution of the obser-
vations in forcing space shown in Fig. 5 is the existence of
noticeable data “holes.” In the lower half of Fig. 5, the
region with no data points at large values of stabilizing
Q , 0 and small g* is likely an artifact resulting from the
finite noise level of the vertical velocity measurement. How-
ever, in the upper half-plane of mixed convective and wind/
wave forcing, there are no records in the region of large g*
and large Q (of either sign), nor that of small g* and large
Q . 0. These holes arguably arise through characteristics of
the forcings, the first because LSC (large g*) events at LEO
occur during prolonged storms when normally heavy cloud
cover greatly reduces the magnitude of surface heat fluxes,

the second because surface heat flux is a function of wind
speed (Fairall et al. 2003), hence restricted in magnitude in
conditions of low wind stress/low wave state. It will be inter-
esting to discover whether these holes are filled when sur-
face forcing conditions are more extreme than those
encompassed by the present observations.

Using data from the LEO043 storm event and from storm
events at a deeper site off the coast of Georgia, Gargett
and Savidge (2020) suggested that LSC essentially disap-
pear below a critical value of g* 5 gcrit

*
∼ 2 3 1023 s21

[log(g*) ∼22:7]. Figure 5 shows that this conclusion is a rea-
sonable one provided that during and after the transition
through gcrit

*
, Q remains , ∼100 W m22 (or Bo , 4 3 1028 W

kg21, as was the case with the data used by Gargett and
Savidge 2020). For example, moving to the left with |Q| ,
∼100 Wm22 in Fig. 5, wvar of O[1023] (m s21)2 associated
with LSC at log(g*).22:7 decreases by more than an order
of magnitude by log(g*)523:0 and remains low for still
smaller values of g*. It is interesting to speculate on a physical
process associated with the transition in such cases, i.e., where
heat flux likely plays an insignificant role, hence the observed
difference must be related to difference in wave forcing. In
this regard, Fig. 10 shows «, a spectral peak wave steepness
parameter defined by Banner et al. (2000), as a function of
log(g*). It is clear that the point where g* exceeds gcrit* coin-
cides roughly with the point where « exceeds the value of
0.055 that Banner et al. (2000) claim marks the onset of break-
ing of wind-driven waves at or near the spectral peak. The

FIG. 10. Spectral wave steepness parameter « defined by Banner
et al. (2000) plotted against the logarithm of g

*
, growth rate of

Langmuir circulations in an unstratified fluid as derived theoreti-
cally by Leibovich (1977). Records plotted have a nonstratified
water column, waves are identified as actively wind-forced waves,
and |Q| , 100 Wm22. The solid horizontal line at « 5 0.055 is the
value that Banner et al. (2000) identify as the onset of breaking of
waves at or near the peak of a wind-wave spectrum. The vertical

dashed line is at log gcrit
*

5 23 1023 s21
( )

, the value that Gargett

and Savidge (2020) found marked a transition between states with
and without LSC. The coincidence of these transitions implies a
strong role for wave breaking in generation of LSC.
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coincidence of these transitions supports the suggestion by
Gargett and Savidge (2020) that already paired vorticity sup-
plied by the horizontal velocity “scars” of breaking waves is a
more effective input of the vertical vorticity necessary for the
Stokes force than is the randomly oriented vertical vorticity of
a classical sheared boundary layer. While the fundamental
process(es) underlying the observed transition in purely
wave-forced turbulence at gcrit* is an interesting subject for
future research, it should be recognized that a similar transi-
tion in g* that also moved toward high heat loss (e.g., toward
states like clusters c and d in Fig. 7) would not show such a
sharp cessation of LSC, but the progressive decrease in turbu-
lence organization and strength documented in Fig. 7.

The observations discussed here have significant conse-
quences for numerical modeling of OSL turbulence. Stud-
ies focused solely on Langmuir turbulence, i.e., with no
surface buoyancy forcing, should be run at or near the
value of La ∼ O(0.1) that is reliably exhibited by observations.
However, pure wind/wave forcing, i.e., with Bo ∝ Q ∼ 0, is the
exception rather than the rule in the real ocean, occurring
mostly when the strong diurnal cycle in buoyancy forcing nor-
mally present is reduced by cloud cover during storms. During
the often extensive periods between major storms, turbulence
in the OSL is influenced both by nighttime convection and by
stabilizing daytime heating: thus further LES studies of mixed
forcings, adding to those of Min and Noh (2004) and Walker
et al. (2016), are recommended. Finally, to date most models
involving Langmuir turbulence are run to steady state. While
it has been demonstrated that OSL turbulence can be consid-
ered to be in quasi-steady state under changes in wind-wave
forcing, this is not an acceptable assumption when change in
buoyancy forcing plays a significant, even if partial, role. LES
case studies of simplified time-dependent scenarios with
mixed forcings would be useful in determining a reliable
“decay time” of mixed layer turbulence upon the switch to
stabilizing daytime heat gain and a (likely different) “growth
time” following the opposite switch to destabilizing nighttime
heat loss, plus how these time scales depend on the form/
strength of turbulence present before a change in buoyancy
forcing. The night-to-day time scale would be particularly use-
ful to biologists seeking to understand the mixing environ-
ment of phytoplankton during sunlit hours, since the present
results indicate that this environment can depend strongly
upon conditions the previous night.

In conclusion, it should be acknowledged that the pre-
sent exploration of the utility of a forcing space uses data
from a shelf site where, under certain wind directions, the
presence of a nearby shoreline allows development of
steady-state mean flows (Grosch and Gargett 2016), poten-
tially allowing turbulent structures that are more organized
than those typical of the deep ocean mixed layer, where
imposition of steady wind instead produces rotating mean
flow and Langmuir turbulence (McWilliams et al. 1997). It
is thus essential that data similar to that presented here be
obtained in this latter case. While standard observational
procedures are available for the necessary wind/wave forc-
ing fields in the deep ocean environment, the outstanding
challenge is to obtain time-continuous information on

large-scale turbulent structure and intensity similar to that
used here. A short exploratory deployment of a standard
ADCP looking upward from a subsurface float on a stable
offshore mooring (R. E. Thomson 2010, personal commu-
nication) recorded fluctuating tilts that were encouragingly
small. With engineering to reduce mean tilts (which
averaged 0.58–18), use of a VADCP in this configuration
could perhaps provide the necessary direct turbulence
information.
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APPENDIX

Correction for Missing Variance in Stokes Function and
Stokes Shear Function

GG14 describe derivation of a surface wave displacement
spectrum from measurements of vertical velocity in a verti-
cal range bin taken as close as possible to the mean surface
(a distance dependent upon surface wave height). The deri-
vation involves a response function that rises steeply for
f , fL 5 0.06 Hz and, in cases with large waves, also for
f . fM 5 0.4 Hz (for discussion and examples of the
response function in low and high wave states, see the
appendix of GG14). The range of acceptable displacement
spectral estimates is thus taken as f , fL , fM. The resulting
displacement spectrum is used in the expression of Kenyon
(1969) to derive a Stokes function whose integral over fre-
quency is the Stokes velocity (hence use of the term function
rather than spectrum) as a function of x3. The vertical deriv-
ative of this is the associated Stokes shear function.

Figure A1 shows displacement spectra (Fig. A1a) and
associated surface (x3 5 0) Stokes functions (Fig. A1b)
derived for all records in LEO043. In both panels, the left
vertical line is at the spectral estimate corresponding to
fL ≡ ceil(0.06 Hz/df) where df is the spectral frequency reso-
lution: fL is taken as the low-frequency limit of integrations
for wave height and surface Stokes drift velocity. The right
solid vertical line in both is at the spectral estimate corre-
sponding to fM ≡ floor (0.4 Hz/df), taken as the upper-fre-
quency limit of integration for both variables. Spectral/func-
tion peaks are sought only within this range. The dashed
vertical line in (Fig. A1b) is at fM 2 2df. Records in which
the surface Stokes function peaks at (or below) this
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frequency are considered to have a defined peak (i.e., the
Stokes function decreases for at least two frequency esti-
mates beyond the peak but before fM). Stokes functions
with peaks at frequencies above this limit are considered
undefined and/or potentially affected by noise, hence US0 is
indeterminate.

Because the Stokes spectral function is weighted to high
frequencies relative to the displacement spectrum, it is desir-
able to correct measured spectra for missing variance from
frequencies above fM. As discussed in section 2a, corrections
in published articles have been done using various assump-
tions about the wave spectral form above fM. Because
wind-forced waves in the present data achieve the high
wavenumber Toba (1973) f24 form at frequencies above the
displacement spectral peak (not shown), the present correc-
tion uses a minor variation of a model originally introduced
by CVG, who appended to the measured spectral value at
fM a “tail” with slope transitioning from 24 at fM to 25 at a
wave-breaking frequency vB 5 2pfB 5 0:0061g=u* deter-
mined by Forristall (1981). CVG reasonably argued that
once waves break they no longer contribute to the first-order
nonlinearity that is Stokes drift, hence terminated the added
variance calculation at fB.

As discussed above, the present observations derive sur-
face wave height from vertical velocity measured in a verti-
cal range bin as close as possible to the mean surface, a
process that involves a transfer function that rises at high
frequencies, the more steeply the further the measurement
is below the mean sea surface. For frequencies above 0.4 Hz,
this transfer function is near 1 for low wave heights, but
increases when larger waves force the measurement bin further
from the surface, introducing the likelihood of error due to
noise amplification in such cases. As a result, the measured
spectrum is used only to fM, and a high-frequency extension
for fM , f , fB is made using the deterministic level of the
Toba spectrum at fM, as follows.

Expressed in radian frequencies, the Toba version of the
wave height spectrum above vP, the peak frequency of the
displacement spectrum, is

fToba v( ) 5 aTobagu*
rw
rair

( )1=2
v24: (A1)

Forristall (1981) reported two distinct ranges in his meas-
urements, v24 from the spectral peak out to a sharp change
(to v25) at v 5 vB. The Toba form is thus used here for
frequencies vM , v , vB, without the gradual change in

FIG. A2. Significant frequencies as functions of u* over the range
of u* observed at LEO. The horizontal line is fM 5 0.4 Hz, the
maximum accepted frequency for measured wave displacement
spectra at LEO. The black solid curve is the wave breaking fre-
quency fB of Forristall (1981). The black dashed curve is the fre-
quency fW above which ECMWF declares waves to be wind
forced.

FIG. A1. (a) Displacement spectra and (b) surface Stokes functions for all records of LEO043. Black dots mark
peaks of displacement spectra/Stokes functions for records in which an ECMWF criterion (Bidlot 2020) identifies the
displacement peak wave as not wind forced.
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slope used by CVG. The resulting Stokes spectral function
at the surface is given by

US0 5 US x3 5 0( ) 5 2
�vM

0
f§ v( )vk cosh2kH

2sinh2kH
dv

1
2
g

�vB

vM

aTobagu*
rw
rair

( )1=2
v24v3dv

5 US0M 1 AToba

�vB

vM

v21 dv

5 US0M 1 AToba lnvB 2 lnvM( ) (A2)

where f§(v) in the first term is the measured surface
wave height spectrum and the second term uses fToba(v) in
the deepwater formA1 of the Stokes function (see the appendix
of GG14). US0M is the measured part of the variance and
AToba 5 2aTobau* rw=rair

( )1=2 is known, given a (record aver-
age) value of u* and a value for the Toba constant, here
taken as aToba 5 0.11.A2 The corrected value US0 is thus

US0 5 US0M 1 ATobaln
vB

vM

( )
5 US0M 1 ATobaln

fB
fM

( )
: (A3)

As u* increases, fB decreases (solid curve in Fig. A2),
eventually reaching frequencies fB # fM. For such situations,
absent in the present dataset, calculation of US0M would be
halted at fB.

Figure A3 shows uncorrected and corrected values of US0

for records in sessions LEO161 and LEO043. Records
where the values are the same in these plots are those
affected by an unaddressed problem with previous and pre-
sent forms of variance correction, namely, the question of
how to correct the variance when waves are not wind-
forced waves, but rather decaying remnants of a previous
wind event and/or swell, conditions usually associated with
low and/or decreasing wind stress. To identify such cases, I
use the criterion of the ECMWF [Bidlot 2020, Eq. (1)]
which declares that waves are considered subject to forcing
by wind when

1:2 3 28
ua
*

c

( )
cos u 2 f( ) . 1,

where ua
*

is the air-side wind stress velocity, the phase
speed of the spectral peak wave is c5v=k5vg=
v2 5 g=v5 g= 2pf( ), and f and u are respectively the
directions (to) of the wind and the wave. Using this expres-
sion for cA3 and assuming wind-aligned wavesA4 yields
fW 5 g

/
1:2(28)2pua*
[ ]

5 g ra=rw
( )1=2/ 1:2(28)2pu*

[ ]
as the fre-

quency fW above which waves are wind forced, shown as
the dashed curve in Fig. A2. For values of u* ,∼0:004 m s21,
none of the observed spectral range can be considered as wind
forced, hence adding a wind-forced extension is unjustified. I
chose not to correct US0 for such records since it is unclear

FIG. A3. For sessions (a) LEO161 and (b) LEO043, surface Stokes drift velocity US0 uncorrected (heavy line) and
corrected with the present algorithm (light line). Records with equal estimates are those that do not meet the ECMWF
criterion for wind-forced waves.

A1 Waves of frequency 0.4 Hz or greater are effectively deepwa-
ter waves in 15-m water depth, justifying use of a high wavenum-
ber extension based on deepwater forms.

A2 The Toba coefficient is often taken to be 0.096, the simple
mean of all values given in Table 2 of Battjes et al. (1987), eight
estimates ranging from 0.02 to 0.13 and increasing chronologically
with date of publication. Many are from limited fetch studies and
the first is a laboratory study. More recently, Resio et al. (2004)
and Romero and Melville (2010) both found the Toba coefficient
to vary somewhat with wave age. The value 0.11 used here
assumes a wave age of ∼26.

A3 Phase speeds of intermediate waves, often typical at LEO,
diverge from those of deepwater waves only for frequencies less
than ∼0.1 Hz, a peak frequency not reached until values of u* in
excess of 0.016 m s21. Thus the deepwater approximation is ade-
quate for the values of u* , 0:004 m s21 where fW exceeds fM,
hence by the ECMWF criterion the measured spectrum is not
associated with wind-forced waves.

A4 The assumption of wind-aligned waves provides a lower
bound over the entire range, since if waves are not aligned with
the wind, the factor cos(u 2 f) , 1 requires an even larger fre-
quency f nW 5 fW=cos u 2 f( )[ ]

. fW .
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what an appropriate extension would be under these circum-
stances (while the “correct” value presumably lies somewhere
between the uncorrected and corrected values, specific investi-
gation of the high-frequency spectral form of waves that are
not being actively wind forced is necessary to resolve this
issue). In Fig. A1, white/black dots denote LEO043 records
that are/are not wind forced by the ECMWF criterion, hence
the associated values of US0 do/do not include estimated miss-
ing variance.

Stokes velocity at a depth x3 , 0 below the surface is
given by

US x3( ) 5 2
�vM

0
f§ v( )vk cosh 2k x3 1 H( )

2 sinh2kH
dv

1 AToba

�vB

vM

v21exp 2 v2=g
( )

x3
[ ]

dv

again using the deepwater form of depth variation in the
second term. Stokes shear at x3 is thus given by

dUS

dx3
5

dUS

dx3

( )
M
1 AToba

�vB

vM

v212
v2

g

( )
exp 2 v2=g

( )
x3

[ ]
dv,

(A4)

from which a straightforward calculation yields the cor-
rected Stokes shear

dUS

dx3
5

dUS

dx3

( )
M
1

AToba

2x3
exp 2 v2

B=g
( )

x3
[ ]

2 exp 2 v2
M=g

( )
x3

[ ]{ }
:

(A5)

As seen in Fig. A4b, the value of Stokes shear at the
depth x3 5 23 m used in calculating g* is almost unaffected
by the loss of variance correction, a direct result of the
choice by GG14 of this depth as the shallowest at which
the Stokes shear spectrum was bounded within

f , fM � 0:4 Hz:
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